

Exploring the Current Applications and Research of General Chemistry Topics

Kaci Kuntz, PhD University of Utah

October 8, 2022

Outline

- Unit-by-unit examples
 - Real-world application
 - Current research
 - Collaborate!
- Resources

AP Chemistry (2022-2023)

Unit 1: Atomic Structure and Properties

- Unit 2: Molecular and Ionic Compound Structure and Properties
- **Unit 3:** Intermolecular Forces and Properties
- **Unit 4:** Chemical Reactions
- Unit 5: Kinetics
- **Unit 6:** Thermodynamics
- Unit 7: Equilibrium
- Unit 8: Acids and Bases
- Unit 9: Applications of Thermodynamics

Unit 1: Atomic Structure & Properties

UNIT 1	At St Pr	omic ructure opertie	e and s
~9–1	O Class Periods	7–9%	AP Exam Weighting
SPQ 5	1.1 Mole	s and Mo	lar Mass
SPQ	1.2 Mass	s Spectros	scopy of
5	Elem	ents	
SPQ	1.3 Elem	ental Con	nposition
2	of Pu	ire Substa	inces
SPQ	1.4 Com	position c	of
5	Mixtu	ures	
SAP	1.5 Atom	nic Structu	ure and
1	Elect	ron Confi	guration
SAP	1.6 Photo	oelectron	
4	Spec	troscopy	
SAP 4	1.7 Perio	dic Trenc	ls
SAP	1.8 Valer	nce Electr	ons and
4	Ionic	: Compou	nds

- Visualizing the Atom: TEM
- Measuring Orbitals in Quantum Mechanical Model
 - XPS core electrons
 - UPS valence electrons
- General Applications of Isotopes

How do we know atoms exist?

<u>Atom</u>: smallest particle of an element that retains its chemical identity

- How do we know it exists?
- Can we see it?

Graphene: a single layer of graphite

Transmission Electron Microscope

images of graphene

How do we measure energy of electrons in orbitals?

X-ray and Ultraviolet photoemission spectroscopy

How do XPS & UPS work?

• Might see 1s, 2s, 2p

XPS of Phosphorus on Gold
Phosphorus, PXPS of phosphorus

• Electron configuration: $1s^2 2s^2 2p^6 3s^2 3p^3$

Why are isotopes significant?

https://www.healthline.com/health/ thyroid-scan#uses

https://en.wikipedia.org/wiki/File:Ben zyneconversioncolouredlabels.png

Unit 2: Molecular & Ionic Compounds

- Can we see bonds? Can we measure them?
- Effects of hybridization

Measuring Bond Length Atomic force microscopy (AFM)

Graphene: a single layer of graphite

Sur, U. Inter J of Electrochem. (2012) 10.1155/2012/237689

Department of Chemistry College of science | THE UNIVERSITY OF UTAH

Ionic vs. Covalent

Ionic "Bonding"

Covalent Bonding

Table salt, NaCl(s)

Ice, $H_2O(s)$

H₂O molecules

What is the C hybridization?

Graphite (aka pencil lead)

Graphite

Diamond

Diamond

Unit 3: Intermolecular Forces

- Intermolecular UNIT Forces and 3 **Properties** ~14-15 Class Periods 18-22% AP Exam Weighting SAP 3.1 Intermolecular Forces SAP 3.2 Properties of Solids 4 SAP 3.3 Solids, Liquids, and Gases SAP 3.4 Ideal Gas Law SAP 3.5 Kinetic Molecular Theory SAP 3.6 Deviation from **Ideal Gas Law** SPQ 3.7 Solutions and Mixtures 5 SPQ 3.8 Representations of Solutions 3 3.9 Separation of SPQ Solutions and Mixtures Chromatography SPQ 3.10 Solubility SAP 3.11 Spectroscopy and the Electromagnetic Spectrum SAP 3.12 Photoelectric Effect SAP 3.13 Beer-Lambert Law
- Shape of snowflakes
 - Research: Non-Newtonain fluids
- Research: Janus particles
- Types of solids in everyday life

Snowflakes are shaped by IMFs!

Consider a single water molecule. How many water molecules can it hydrogen bond to (ignore crowding effects)?

A snowflake's shape is determined by the interactions of hydrogen bonds during its formation.

Department of Chemistry

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

How does Gore-tex work?

Choi, Chang K., "Evaporation characteristics of water droplets on super-hydrophobic surface." (2022)

Department of Chemistry

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Non-Newtonian Fluids

Increasing kinetic energy (KE); increasing temperature (K)

Increasing intermolecular forces (IMF)

Fundamental difference: **Distance between particles**

Janus Particles

- Two-faced particles
 - Hydrophylic vs. hydrophobic
 - Self-assembly particles
 - Solar cells: n-type vs. p-type

Department of Chemistry COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Amorphous vs. Crystalline Solids

Amorphous

Crystalline

Diamond

Properties of Types of Crystalline Solids

Types of Crystalline Solids and Their Properties

Type of Solid	Type of Particles	Type of Attractions	Properties	Examples	
ionic	ions	ionic bonds hard, brittle, conducts electricity as a lig not as a solid, high to very high melting		NaCl, Al ₂ O ₃	
metallic	atoms of electropositive elements	of metallic bonds shiny, malleable, ductile, conducts heat and electricity well, variable hardness and melting temperature		Cu, Fe, Ti, Pb, U	
covalent network	atoms of electronegative elements	covalent bonds	very hard, not conductive, very high melting points	C (diamond), SiO ₂ , SiC	
molecular	molecules (or atoms) IMFs		variable hardness, variable brittleness, not conductive, low melting points	H ₂ O, CO ₂ , I ₂ , C ₁₂ H ₂₂ O ₁₁	

General Guide for Bonding in Solids

1 H 1.008 Hydrogen								\mathbf{C}				\mathbb{N}	0	ec	cul	ar	² He 4.002602 Helium
3 Li 6.94 Lithium	4 Be 9.0121831 Beryllium										51 II •1 •	5 B 10.81 Boron	6 C 12.011 Carbon	7 N 14.007 Nitrogen	8 O 15.999 Oxygen	9 F 18.998403163 Fluorine	10 Ne 20.1797 Neon
11 Na 22.98976928 Sodium	12 Mg 24.305 Magnesium			Μ	et	als	S	ne	etw		K	13 AI 26.9815385 Aluminium	14 Si 28.085 Silicon	15 P 30.973761998 Phosphorus	16 S 32.06 Sulfur	17 Cl 35.45 Chlorine	18 Ar 39.948 Argon
19 K 39.0983 Potassium	20 Ca 40.078 Calcium	21 Sc 44.955908 Scandium	22 Ti 47.867 Titanium	23 V 50.9415 Vanadium	24 Cr 51.9961 Chromium	25 Mn 54.938044 Manganese	EFe 55.845 Iron	27 CO 58.933194 Cobalt	28 Ni 58.6934 Nickel	29 Cu 63.546 Copper	30 Zn 65.38 Zinc	31 Ga 69.723 Gallium	32 Ge 72.630 Germanium	33 As 74.921595 Arsenic	34 Se 78.971 Selenium	35 Br 79.904 Bromine	36 Kr 83.798 Krypton
37 Rb ^{85,4678} Rubidium	38 Sr 87.62 Strontium	39 Y 88.90584 Yttrium	40 Zr 91.224 Zirconium	41 Nb 92.90637 Niobium	42 Mo 95.95 Molybdenum	43 Tc 98 Technetium	44 Ru 101.07 Ruthenium	45 Rh 102.90550 Rhodium	46 Pd 106.42 Palladium	47 Ag 107.8682 Silver	48 Cd 112.414 Cadmium	49 In 114.818 Indium	50 Sn 118.710 Tin	51 Sb 121.760 Antimony	52 Te 127.60 Tellurium	53 126.90447 Iodine	54 Xe 131.293 Xenon
55 CS 132.90545196 Caesium	56 Ba 137.327 Barium	57 71	72 Hf 178.49 Hafnium	73 Ta 180.94788 Tantalum	74 W 183.84 Tungsten	75 Re 186.207 Rhenium	76 OS 190.23 Osmium	77 Ir 192.217 tridium	78 Pt 195.084 Platinum	79 Au 196.966569 Gold	80 Hg 200.592 Mercury	81 TI 204.38 Thallium	82 Pb 207.2 Lead	83 Bi 208.98040 Bismuth	PO 209 Polonium	85 At 210 Astatine	86 Rn 222 Radon
87 Fr 223 Francium	BB Ra 226 Radium	89 103	104 Rf 267 Rutherfordium	105 Db 268 Dubnium	106 Sg 269 Seaborgium	107 Bh 270 Bohrium	108 Hs 269 Hassium	109 Mt 278 Meitnerium	110 DS 281 Darmstadtium	III Rg 281 Roentgenium	112 Cn 285 Copernicium	Uut 286 Ununtrium	114 Fl 289 Flerovium	Ununpentium	116 LV 293 Livermorium	Ununseptium	118 Uuc 294 Ununoctium
La	anthanide	57	58	59 Dr		61 Drac	62 C 122	63 F • •	64 C d	65 Th	66	67	⁶⁸	69 T 122	70 Vb	71	
	Series	Ld 138.90547 Lanthanum	140.116 Cerium	Pr 140.90766 Praseodymium	144.242 Neodymium	PM 145 Promethium 93	511 150.36 Samarium 94	EU 151.964 Europium	Ga 157.25 Gadolinium	1 D 158.92535 Terbium 97	Dy 162.500 Dysprosium	HO 164.93033 Holmium 99	167.259 Erbium	168.93422 Thulium	YD 173.054 Ytterbium	174.9668 Lutetium	
	Series	Ac 227 Actinium	Th 232.0377 Thorium	Pa 231.03588 Protactinium	U 238.02891 Uranium	Np 237 Neptunium	Pu 244 Plutonium	Am 243 Americium	Cm 247 Curium	Bk 247 Berkelium	Cf 251 Californium	Es 252 Einsteinium	Em 257 Fermium	Md 258 Mendelevium	No 259 Nobelium	Lr 266 Lawrencium	

lonic = metal + electronegative element

Graphite:

Covalent-network (in plane) & Molecular (between planes)

Graphene: a single layer of graphite

<u>Graphene is:</u> The thinnest material The strongest material (by weight) The most conductive material The most flexible material

Gypsum: Chalk, Plaster of Paris, Sheet Rock

Gypsum: Crystals & SEM

Rahman, F. (2013). Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination. Desalination. 319. 79–84. 10.1016/j.desal.2013.03.027.

Unit 4: Chemical Reactions

- Precipitating lead (very relevant in Utah)
- Combustion of Gasoline

Precipitation Reactions

Precipitation reactions occur when two solutions containing soluble salts are mixed and an insoluble salt is produced. The solid is called a **precipitate**.

For example: What happens when potassium iodide and lead (II) nitrate react? Be sure to include states of matter in the balanced chemical reaction.

 $2 KI (aq) + Pb(NO_3)_2(aq) \rightarrow 2 KNO_3(aq) + PbI_2(s)$

D-Lead® Paint Test Kit from ESCA Tech, Inc

Lead-based paint was banned iin 1978 due to its toxic effects.

1. Lead in the paint is likely to have oxidized in air and formed lead (II) carbonate PbCO₃. A sample of paint is first placed in a basic solution (< 1 wt % NaOH).

 $PbCO_{3}(s) + 4 OH^{-}(aq) \rightarrow Pb(OH)_{4}^{2-}(aq) + CO_{3}^{2-}(aq) K_{1}$

2. Then, ammonium sulfide (NH₄)₂S (< 2 wt%) is added to the previous mixture. If any lead cations are present, the following reaction will occur, producing brown lead (II) sulfide.
Pb(OH)₄²⁻ (aq) + (NH₄)₂S (aq) → PbS (aq) + 2 NH₄OH (aq) + 2 OH⁻ (aq) K₂

Given that each of these reactions occur spontaneously at room temperature, what can be determined about the standard Gibbs Free Energy ΔG° for these processes (positive, negative, or zero)? (2 *pts*)

1) What can you determine about the equilibrium constant K_{eq} for these reactions $(K_{eq} > 1, K_{eq} < 1, K_{eq} = 1)$? Briefly support your answer. (2 *pts*)

D-Lead[®] Paint Test Kit from ESCA Tech, Inc

- 1. Given that each of these reactions occur spontaneously at room temperature, what can be determined about the standard Gibbs Free Energy ΔG° for these processes (positive, negative, or zero)?
- 2. What can you determine about the equilibrium constant K_{eq} for these reactions ($K_{eq} > 1$, $K_{eq} < 1$, $K_{eq} = 1$)? Briefly support your answer. Write the equilibrium constant K' for the net chemical reaction.
- 3. How is K' calculated based on K_1 and K_2 ?
- 4. The first reaction can only occur in basic conditions where the pH > 12. Calculate the pH of the < 1 wt% NaOH. Approximate the density of this solution as 1 g/mL at room temperature.
- 5. The detection limit of this reaction if 400 ppm Pb. What is the limiting reactant in this test: NaOH, $(NH_4)_2S$, or PbCO₃?

Combustion of Gasoline

Gasoline used in vehicles is a mixture of hydrocarbons that can be approximately represented by the formula C_8H_{18} . When this hydrocarbon combusts in an engine, it produces energy that can then be used to move a vehicle. Write the complete combustion reaction of gasoline in a car.

 $2\mathrm{C}_8\mathrm{H}_{18}(l) + 25\mathrm{O}_2(g) \rightarrow 16\mathrm{CO}_2(g) + 18\mathrm{H}_2\mathrm{O}(g)$

Department of Chemistry College of science | THE UNIVERSITY OF UTAH

Technology Highlights

- Oxidation
 - Ag vs. Al mirrors
 - Al₂O₃ vs CuO
- Selective adsorption
 - Scrubbing CO₂
- Surface functionalization
 - Sensors
- New material discovery & characterization

Unit 5: Kinetics

Lifetime of medicine

- Elephant toothpaste:
 Decomposition of H₂O₂
 - How yeast catalyzes this is still NOT KNOWN!

Kinetics & Pharmaceuticals

The chemotherapy drug Platinol is used to treat a variety of cancers. The change in concentration vs. time for Platinol is plotted below. Based on the graphs, is the hydrolysis of Platinol a zeroth, first, or second order reaction?

A. Zero **B. First**C. Second
D. Impossible to tell

Half-life & Pharmaceuticals The rate constant for Platinol is 1.5×10^{-3} min⁻¹ under physiological conditions. If the starting concentration of Platinol is 0.89 M, what is the half life of the drug?

- A. 410 minutes
- B. 440 minutes
- C. 460 minutes
- D. 520 minutes

0.693
k =
$$t_{1/2}$$

Pro'cat' Kinetics

A cat has a daily dose of fluoxetine (Prozac) to treat her severe anxiety. When her owner goes out of town, the pet sitter is unable to get her to take her medicine. After missing five days of medicine, what percentage of the therapeutic level remains in the cat's blood? The half-life is 55 hours. Assume the drug is metabolized according to first-order kinetics.

Unit 6:Thermodynamics

UN	Thermodynamics
~10-	-11 Class 7-9% AP Exam Weighting
ENE 6	6.1 Endothermic and Exothermic Processes
ENE 3	6.2 Energy Diagrams
ENE 6	6.3 Heat Transfer and Thermal Equilibrium
ENE 2	6.4 Heat Capacity and Calorimetry
ENE 1	6.5 Energy of Phase Changes
ENE 4	6.6 Introduction to Enthalpy of Reaction
ENE 5	6.7 Bond Enthalpies
ENE 5	6.8 Enthalpy of Formation
ENE	6.9 Hess's Law

- "Kitchen chemistry"
- Phase Changes of NaCl
- Supercritical fluids
- Research: Supercooled fluiids
- Research: Solid Phase
- Research: 2D solids
- Calorimetry

Instapot: Chemistry or Hoax?

The Instapot[™] is an electric pressure cooker that claims to reduce the time necessary to prepare foods. How does it work?

- A. The Instapot[™] decreases the pressure in the cooker, thus decreasing the boiling point (BP) of water. As the water is heated, it boils more quickly and so cooks the food more quickly.
- B. The Instapot[™] increases the pressure in the cooker, thus increasing the BP of water, and the food is cooked more quickly because it is cooking at a higher temperature.
- C. The Instapot[™] increases the pressure in the cooker, thus decreasing the BP of water, and the food is cooked more quickly because it reaches the BP more quickly.
- D. Although the Instapot[™] changes the pressure inside the cooker, it only affects the vapor pressure, not the BP, of water. Food is cooked faster because all the heat is kept in the cooker.
- E. The Instapot is a gimmick.

High Altitude Recipes: WHY?

Many recipes have different instructions for baking at higher altitudes, including using a higher temperature. This is due to the differences in atmospheric pressure and its effect on cooking conditions.

At a higher altitude, atmospheric pressure is _____, therefore water boils at a _____ temperature.

- A. < 1 atm, higher
- B. < 1 atm, lower
- C. > 1 atm, higher
- D. > 1 atm, lower

R = 8.314 J K⁻¹ mol⁻¹

Boiling Point of NaCl

Sodium chloride melts at 801 °C. Molten NaCl has a vapor pressure of 6.12 torr at 977°C and 8.66 torr at 1003 °C.

What is its normal boiling point?

$$\ln\left(\frac{p_2}{p_1}\right) = \frac{\Delta H_{vap}}{R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

Can you really boil NaCl? Courtesy of Dr. Scott Warren, UNC Department of Chemistry

Supercritical Fluids

Behave like a liquid & gas:

- the fluid fills a container completely (like a gas)
- the fluid is much denser than a gas (like a liquid).
- Supercritical fluids are produced when:
 - 1. Temperatures are high enough to overcome intermolecular forces.
 - 2. Pressures are high enough to achieve high densities.

Supercritical CO₂

- 1. Non-polar.
 - Dissolves non-polar substances. ("Like dissolves like.")
- 2. Enters materials like a gas.
- 3. Tunable density.
- 4. Cannot be oxidized.
- 5. Volatile.
- 6. Non-toxic.

Supercritical fluids has replaced toxic solvents in certain applications, including:

- a solvent for dry cleaning
- a solvent for extracting caffeine from coffee beans

Research: Different Solid Phases

Research: 2D Solids

- Black Phosphorus: direct gap semiconductor, sp³
- Blue phosphorene: indirect semiconductor, *sp*² hybridization
- Graphene: semimetal, sp² hybridization, honeycomb

Jain, Ankit & Mcgaughey, Alan. (2015). Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific reports. 5. 8501. 10.1038/srep08501.

Where do we use calorimetry and enthalpy?

Nutriti	on Fac	ts	
Serving Siz	e 1 cup (23	86mL)	
Amount Por 9	onvina		
Calorios 16	Colori	oc from	Eat 70
Galories To	JU Galuli	es non	Fal /
T-1-1 F-1 O		% Daily	alue-
Iotal Fat 8g			12%
Saturated	Fat 5g		25%
<i>Trans</i> Fat	Ug		
Cholestero	l 35mg		11%
Sodium 12	5mg		5%
Total Carbo	hydrate 12	2g	4%
Dietary Fit	per Oa		0%
Sugars 12	'n		
Protein 8a	9		
rioteni og			
Vitamin A 6	• •	Vitami	n C 4%
Calcium 30	% •	1	ron 0%
Vitamin D 2	25%		
* Percent Dai	ly Values are	based on	a 2,000
calorie diet. Y	our daily valu	les may b	e higher
or lower depe	nding on you	r calorie	needs.
	Calories:	2,000	2,500
Total fat	Less than	65g	80g
Sat Fat	Less than	20g	25g
	Less than	300mg	300mg
Cholesterol		9 400a	2 4000
Cholesterol Sodium	Less than	2,400g	2,4009
Cholesterol Sodium Total Carbohy	Less than drate	2,400g 300g	2,400g 375g

Food

Unit 7: Equilibrium

- Haber process
- Ocean acidification
- Mining Quarries & Basicity
- Every day life: Ammonia

Research: Haber ProcessHaber Process $3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$ Exothermic: $\Delta H < 0$ $K_{eq} = 6.8 \times 10^5$

- We have not achieved a production yield of ammonia above 15%.
 - However, if we could improve the yield of ammonia, we could produce sufficient fertilizer to adequately address food needs around the world.

Research: Li-lon Batteries Li-ion Batteries

Homework Question

VERSITY

In old mining sites, such as this rock quarry, water can collect. Over time, minerals become dissolved in the water and alter its pH.

If CaNO₃ dissolves into the water, what would the pH be?

Department of Chemistry College of science | THE UNIVERSITY OF UTAH

Question

For this aqueous reaction in household ammonia $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ K_b = 1.8 \cdot 10^{-5}$ at 25°C. At equilibrium, ____.

A. products dominate the system mixture.

B. reactants dominate the system mixture.

- C. roughly equal amounts of products and reactants are present in the system mixture.
- D. only products are present.
- E. only reactants are present.

Unit 8: Acids and Bases

What is a buffer?

What is a buffer? Buffers are mixtures that resist changes in pH.

If you add strong acid or strong base to a buffer, the pH won't change much.

Our bodies function because our blood is a buffer with a pH of 7.45.

Buffers soak up H⁺ from a strong acid or the OH⁻ from a strong base.

Buffers in the body

The equilibrium system that buffers blood is: $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$

What is the ratio of $[HCO_3^-]$ to $[H_2CO_3]$ in blood at pH 7.45?

 $K_a(H_2CO_3) = 4.3 \times 10^{-7}$

Unit 9: Applications of Thermodynamics

Batteries

- Primary Batteries (1971)
 - e.g. Car batteries
- Secondary Batteries (recharge)
 e.g. Li-ion

Galvanic Cells (or Voltaic Cells)

Galvanic cells have:

- oxidation-reduction reactions
 - electrical energy can be utilized
- the reactions occur spontaneously
 - ΔG is negative (ΔE is positive)

Floor of Tesla Model S 500 kg (1000 pounds) of batteries

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Car Batteries: 12 V

- 6 Galvanic Cells in series
 - Approximate voltage from each

 $E_{cell}^{o} = E_{red}^{o}(cathode) - E_{red}^{o}(anode)$

Calculate the voltage produced by each cell.

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Car Batteries: 12 V

- 6 Galvanic Cells in series
 - Approximate voltage from each cell:

$$E_{cell}^{o} = E_{red}^{o}(cathode) - E_{red}^{o}(anode)$$

Calculate the voltage produced by each cell.

$$\begin{array}{ll} PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) E^{\circ}_{red} = +1.69 V \\ \hline PbSO_{4}(s) + 2H^{+}(aq) + 2e^{-} \rightarrow Pb(s) + H_{2}SO_{4}(aq) & E^{\circ}_{red} = -0.35 V \\ \hline PbO_{2}(s) + Pb(s) + 2H_{2}SO_{4}(aq) \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) & E^{\circ}_{cell} = +2.04 V \end{array}$$

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Car Battery: 12 V

$PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l)$	$E_{red}^{\circ} = +1.69 V$
$PbSO_4(s) + 2 H^+(aq) + 2 e^- \rightarrow Pb(s) + H_2SO_4(aq)$	$E_{red}^{\circ} = -0.35 V$

 $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

$$E_{cell}^{\circ} = +2.04 V$$

Car Batteries: Gibbs Free Energy Calculate the standard Gibbs free energy ΔG° for the car battery.

 $\begin{aligned} PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} &\rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) & E_{red}^{\circ} = +1.69V \\ PbSO_{4}(s) + 2H^{+}(aq) + 2e^{-} &\rightarrow Pb(s) + H_{2}SO_{4}(aq) & E_{red}^{\circ} = -0.35V \end{aligned}$

 $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$ $E_{cell}^\circ = +2.04V$

1 *F* = 96,485 C/mol = 96,485 J/V-mol

Car Batteries: Equilibrium Constant Calculate the equilibrium constant K for the car battery at 25°*C*.

 $PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l)$ $PbSO_{4}(s) + 2H^{+}(aq) + 2e^{-} \rightarrow Pb(s) + H_{2}SO_{4}(aq)$

 $E_{red}^{\circ} = +1.69 V$ $E_{red}^{\circ} = -0.35 V$

 $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

$$E_{cell}^{\circ} = +2.04 V$$

1 *F* = 96,485 C/mol = 96,485 J/V-mol

When do batteries work best?

What happens to E_{cell} as temperature increases? Explain.

Often times, people store their batteries in the fridge. Is this a good or bad practice? Explain.

1 F = 96,485 C/mol = 96,485 J/V-mol

Car Batteries: Non-standard Conditions What would happen to the value of K if the battery acid were less concentrated?

What would happen to the voltage produced?

 $PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) \qquad E_{red}^{\circ} = +1.69V$ $PbSO_{4}(s) + 2H^{+}(aq) + 2e^{-} \rightarrow Pb(s) + H_{2}SO_{4}(aq) \qquad E_{red}^{\circ} = -0.35V$

 $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

 $E_{cell}^{\circ} = +2.04 V$

Nernst Equation

Recall, $\Delta G = \Delta G^o + RT \ln Q$ and $\Delta G = -nFE$ So,

$$-nFE = -nFE^o + RT \ln Q$$

By dividing by *-nF*, we get

$$E = E^{o} - \frac{RT}{nF} \ln Q$$

At room temperature and converting In to log, we get

$$\mathbf{E} = \mathbf{E}^{\mathbf{o}} - \frac{0.05916}{n} \log \mathbf{Q}$$

Car Batteries: Non-standard Conditions Calculate the voltage produced if the concentrations are changed and the reaction quotient $Q = 1 \times 10^3$ on a hot summer day at $38^{\circ}C$.

 $\mathbf{E} = \mathbf{E}^{\mathbf{o}} - \frac{\mathbf{RT}}{\mathbf{nF}} \ln \mathbf{Q}$

$PbO_2(s) + H_2SO_4(aq) + 2H^+(aq) + 2e^- \rightarrow 2PbSO_4(s) + 2H_2O(l)$	$E_{red}^{\circ} = +1.69 V$
$PbSO_4(s) + 2 H^+(aq) + 2 e^- \rightarrow Pb(s) + H_2SO_4(aq)$	$E_{red}^{\circ} = -0.35 V$

 $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

 $E_{cell}^{\circ} = +2.04 V$

How to shrink down to small battery?

Same solution at the cathode, anode, and for salt bridge!

This solution *must* conduct electricity and *must* allow molecules to diffuse (move) easily.

This is called an electrolyte.

 $\begin{array}{l} PbO_{2}(s) + H_{2}SO_{4}(aq) + 2H^{+}(aq) + 2e^{-} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) E_{red}^{\circ} = +1.69 V \\ \hline PbSO_{4}(s) + 2H^{+}(aq) + 2e^{-} \rightarrow Pb(s) + H_{2}SO_{4}(aq) & E_{red}^{\circ} = -0.35 V \\ \hline PbO_{2}(s) + Pb(s) + 2H_{2}SO_{4} \rightarrow 2PbSO_{4}(s) + 2H_{2}O(l) & E_{cell}^{\circ} = +2.04 V \end{array}$

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

State-of-Art Battery: Li-ion

What things can be improved?

Layered Structures of Anode & Cathode

Li-ion Batteries: Flammable, Toxic

Short-circuits & gets really hot!

WHY LITHIUM-ION BATTERIES CATCH FIRE

Lithium-ion batteries have been in the news recently with reports of some of Samsung's phones unexpectedly catching fire. Here, we examine how the batteries work and what can make them ignite.

What things can be improved?

- Electrolyte
 - Aqueous solutions
 - Non-aqueous solutions
 - Solid-state electrolytes
- Binder
 - Binder-free
- Valency of the Ion
- Materials: Anode/Cathode
 - Expansion
 - SEI Layer
- Size

Research: Electrolyte

- Aqueous solutions (water: 1.23 V, nontoxic, non-flammable)
- Non-aqueous solutions (current: 4V, toxic, flammable)
- Solid-state electrolytes

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

Research: Different lons

Higher Energy Density

- Single-valent:
 - Li \rightarrow Li⁺ + e⁻
- Multivalent:
 - Mg \rightarrow Mg²⁺ + 2e^{....but} larger radius!
 - Al \rightarrow Al³⁺ + 3e⁻

Carbon, vol <u>120</u>, (2017) 145-156.

Materials: Anode/Cathode

2D heterostructure

J. Am. Chem. Soc. 2016, 138, 49, 16089–16094

2D Materials to Address Li Battery Challenge

ACS Nano 2020, 14, 3, 2628-2658

Department of Chemistry COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

References

- C&EN's Newsletter
 - Annual C&EN's Year in Chemistry
 - C&EN's Trailblazers (2020)
 - List of 20 entrepreneur Women
- ACS Newsletter (Member or <u>Archive</u>)
 - Annual ACS Molecule of the Year
 - Annual ACS Heroes of Chemistry
- For students: <u>Science Focus Newsletter</u>

Department of Chemistry

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

ACS Heroes of Chemistry (2022)

"...industrial chemical scientists whose work has led to the development of successful commercialized products ingrained with chemistry for the benefit of humankind."

Congratulations to the 2022 Heroes of Chemistry!

This year's inductees into the Heroes of Chemistry scientific hall of fame include teams that developed products that have led to significant advancements in dental cements, sustainable packaging, breast cancer treatments, and formulations that protect against or treat COVID-19. Sponsored by the Committee on Corporation Associates, ACS has bestowed this honor annually since 1996.

The following teams will be honored at a special ceremony taking place in Washington, DC on September 29 as Heroes of Chemistry for 2022:

- 3M: RelyX[™] Unicem and Universal Dental Cements have simplified dentalsurgery workflows and cause virtually no post operative sensitivities.
- Dow: EliteTM and Innate[™] sustainable packaging ranges. These enhanced polyethylenes have applications ranging from flexible food packaging to heavy-duty industrial shipping sacks.
- Eli Lilly: Verzenio[•] (abemaciclib) is a selective CDK4 and CDK6 inhibitor, approved by the US Food and Drug Administration, for treating advanced and metastatic as well as high-risk early breast cancers.
- Merck: Lagevrio (molnupiravir), novel antiviral Covid-19 treatment FDA approved for emergency use in Dec. 2021.
- Moderna: Spikevax[™] mRNA-1273 SARS-CoV-2 vaccine first used in the U.S. in December 2020 for individuals 18 and over.
- Pfizer: Paxlovid[™] granted emergency use by the FDA in Dec. 2021 for the treatment of mild to moderate COVID-19.

Nominations for the 2023 awards will open in November. Visit the Heroes of Chemistry website for more information about the 2022 honorees, eligibility and nomination details, and profiles of past recipients. Please send any questions to chemhero@acs.org. Congratulations to the 2022 winners for their hard work and dedication!

Department of Chemistry

COLLEGE OF SCIENCE | THE UNIVERSITY OF UTAH

ACS Molecule of the year

<u>2020</u>

For more than a decade, chemists have thought that rhodium boride contains a triple bond. Using vibrational spectroscopy and theoretical calculations, researchers at Brown University discovered that the bond is likely a **quadruple bond** instead (*J. Phys. Chem. Lett.* 2020, DOI: **10.1021/acs.jpclett.9b03484**).

2021

Researchers at Nagoya University fused 12 benzene rings to make a molecule that loops like an infinity symbol (ChemRxiv 2021, DOI: 10.33774/chemrxiv-2021-pcwcc). In X-ray crystal structures, only 3.192 Å separated the upper and lower benzene rings where the molecule, called infinitene, crosses over itself. Through computational studies, the chemists confirmed that infinitene's π electrons are delocalized within individual benzene rings, not across the entire molecule. The study, which appeared as a preprint, has not yet been peer-reviewed.