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The rate of a chemical reaction
For a chemical reaction like:

          2NO(g) + O2(g)            2 NO2(g)

we define the instantaneous rate of the reaction as v(t):
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v(t) is the rate of decrease of reactants or rate of increase in 
products, and it changes as the reaction proceeds.  It can be 
approximated by finite differences:
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Chemical Reaction Rates 
follow a Rate Law 

Reaction:     Rate Law:
2NO(g) + O2(g)           2 NO2(g)   v(t) = k [NO]2[O2]
H2(g) + I2(g)                 2HI(g)   v(t) = k [H2][I2]
CH3CHO (g)                 CH4(g) + CO(g)  v(t) = k [CH3CHO]3/2

NO2(g) + CO(g)           CO2(g) + NO(g)  v(t) = k [NO2]2

Cl2(g) + CO(g)              Cl2CO(g)   v(t) = k [Cl2]3/2[CO]
2NO(g) + 2H2(g)          N2(g) + 2H2O(g)  v(t) = k [NO]2[H2]

k is called the rate constant for the reaction.
IN ALL CASES, the rate law must be determined by experiments.

NOTE: when v(t) can be written as v(t) = k[A]n[B]m, the superscripts n and 
m are called the order of the reaction with respect to the reactants A 
and B, respectively.  The overall order of the reaction is m+n.



By systematically varying the reactant concentrations, and 
measuring the rate of reaction, the rate law and the rate 
constant can be determined.

Example: 2NO2(g) + F2(g)          2NO2F(g)
Run: [NO2]0  [F2]0  v0  (These are initial values)
  1 1.15 mol/L 1.15 mol/L 6.12 × 10-4 M∙s-1

  2 1.72 mol/L 1.15 mol/L 1.36 × 10-3 M∙s-1

  3 1.15 mol/L 2.30 mol/L 1.22 × 10-3 M∙s-1

Note that in runs 1 and 2, [F2]0 is the same, and in runs 1 and 3, 
[NO2]0 is the same.  This helps greatly in the data analysis.

Experimental determination of a rate law



Experimental determination of a rate law
Continuing the example: 2NO2(g) + F2(g)          2NO2F(g)
Run: [NO2]0  [F2]0  v0  (These are initial values)
  1 1.15 mol/L 1.15 mol/L 6.12 × 10-4 M∙s-1

  2 1.72 mol/L 1.15 mol/L 1.36 × 10-3 M∙s-1

  3 1.15 mol/L 2.30 mol/L 1.22 × 10-3 M∙s-1

If we assume a rate law of the form v(t) = k[NO2]n[F2]m , we can compare the 
initial rates of runs 1 and 2 by dividing the rate law expressions for these two 
cases:
𝑣0(𝑟𝑢𝑛 1)

𝑣0(𝑟𝑢𝑛 2)
=

k[1.15 M]n[1.15 M]m

k[1.72 M]n[1.15 M]m
=

6.12 × 10−4 M∙s−1

1.36 × 10−3 M∙s−1
= 0.450

[1.15 M]n

[1.72 M]n
=

1.15

1.72

𝑛

= (0.6686)𝑛 = 0.450

Taking logarithms, n( ln 0.6686) = ln 0.450, or n = 
ln 0.450

ln 0.6686 = 1.984

This is close to 2, so the reaction order with respect to [NO2] is 2, within error limits.



Experimental determination of a rate law
Continuing the example: 2NO2(g) + F2(g)          2NO2F(g) 
Run: [NO2]0  [F2]0  v0  (These are initial values)
  1 1.15 mol/L 1.15 mol/L 6.12 × 10-4 M∙s-1

  2 1.72 mol/L 1.15 mol/L 1.36 × 10-3 M∙s-1

  3 1.15 mol/L 2.30 mol/L 1.22 × 10-3 M∙s-1

Likewise, we can take the ratio of the reaction rates in runs 1 and 3 to 
deduce the reaction order with respect to [F2]:

𝑣0(𝑟𝑢𝑛 1)

𝑣0(𝑟𝑢𝑛 3)
=

k[1.15 M]n[1.15 M]m

k[1.15 M]n[2.30 M]m
=

6.12 × 10−4 M∙s−1

1.22 × 10−3 M∙s−1
= 0. 5016

[1.15 M]m

[2.30 M]m
=

1.15

2.30

𝑚

= (0.500)𝑛 = 0.5016

Taking logarithms, n( ln 0.500) = ln 0.5016, or n = 
ln 0.5016
ln 0.500 = 0.9954

This is close to 1, so the reaction order with respect to [F2] is 1, within the error limits.



Experimental determination of a rate law
Continuing the example: 2NO2(g) + F2(g)          2NO2F(g)
Run: [NO2]0  [F2]0  v0  (These are initial values)
  1 1.15 mol/L 1.15 mol/L 6.12 × 10-4 M∙s-1

  2 1.72 mol/L 1.15 mol/L 1.36 × 10-3 M∙s-1

  3 1.15 mol/L 2.30 mol/L 1.22 × 10-3 M∙s-1

Now we know that the rate expression is v(t) = k[NO2]2[F2], so we can solve 
for k in the three runs.  First, solving the rate expression for k gives:

𝑘 =
𝑣

[NO2]2[F2]
Using the initial concentrations and initial rates in the three runs we get:

Run 1: 𝑘 =
6.12 × 10−4 M∙s−1

[1.15 M]2[1.15 M]
= 4.02 × 10−4 𝑀−2𝑠−1

Run 1: 𝑘 =
1.36 × 10−3 M∙s−1

[1.72 M]2[1.15 M]
= 4.00 × 10−4𝑀−2𝑠−1

Run 1: 𝑘 =
1.22 × 10−3 M∙s−1

[1.15 M]2[2.30 M]
= 4.01 × 10−4𝑀−2𝑠−1

We can report a rate constant of 𝑘 = 4.01 ± 0.01 × 10−4𝑀−2𝑠−1.



The units of the rate constant
Because the rate law expression can be different for different reactions, the 
units of k will vary from one rate law to another as well.

For an overall reaction order of N, the rate expression has units of:
v(in M∙s-1) = k × (concentration, in M)N

Solving for the units of k, we get 
k = v(in M∙s-1)/ (concentration, in M)N

or k = M∙s-1/ MN = M(1-N)∙s-1

Here are some examples:
Rate Law  Overall Order  Units of k
v = k   0   M∙s-1

v = k [A]   1   s-1

v = k [A]2  2   M-1∙s-1

v = k [A][B]  2 (1 in A, 1 in B, 2 overall) M-1∙s-1

v = k [A]1/2  ½   M1/2∙s-1

v = k [A][B]1/2  3/2 (1 in A, ½ in B) M-1/2∙s-1

The units of k are whatever they need to be for the expression to make sense.



Integrated Rate Laws
Instantaneous reaction rates, like 

𝑑[𝐴]

𝑑𝑡
  are hard to measure. To get around this, we 

need integrated forms of the rate laws.

First order reaction:   N2O5(g)        2NO2 + ½ O2 𝑣 𝑡 = −
𝑑 𝑁2𝑂5

𝑑𝑡
= 𝑘 𝑁2𝑂5

We can solve the rate law for [N2O5]t by first rewriting it as:
𝑑 𝑁2𝑂5

𝑁2𝑂5
= −𝑘 𝑑𝑡 ,        then integrating both sides from time t=0 to t.  

0         

𝑡 𝑑 𝑁2𝑂5

𝑁2𝑂5
= −𝑘 0

𝑡
𝑑𝑡 Integration then gives:

          ln
𝑁2𝑂5 𝑡

𝑁2𝑂5 0
= −𝑘𝑡             Exponentiating both sides and multiplying by 𝑁2𝑂5 0

 gives the final form of the solution: 𝑁2𝑂5 𝑡 = 𝑁2𝑂5 0 𝑒−𝑘𝑡

First order reactions show an exponential decay of the reactant over time.
Other examples:

• fluorescence or phosphorescence – after excitation 𝐴∗
𝑡 = 𝐴∗

0𝑒−𝑘𝑡 = 𝐴∗
0𝑒−𝑡/𝜏

 The intensity of emitted light also decays exponentially 𝐼(𝑡) = 𝐼0𝑒−𝑡/𝜏

• radioactive decay of a nucleus – written to base 2, instead of e, for example

 14C
𝑡

= 14C
0

 2−𝑡/𝜏1/2, where τ1/2 is the half-life, given by 

 τ1/2 = (ln 2)/k = 0.693/k      (τ1/2 = 5730 y for 14C).



Integrated Rate Laws
Second order reaction:   NOBr(g)        NO + ½ Br2 𝑣 𝑡 = −

𝑑 NOBr

𝑑𝑡
= 𝑘 NOBr 2 

We can solve the rate law for [NOBr]t by first rewriting it as:
𝑑 NOBr

NOBr 2 = −𝑘 𝑑𝑡                then integrating  from 0 to t

0      

𝑡 𝑑 NOBr

NOBr 2 = 0

𝑡
NOBr −2𝑑 NOBr = −𝑘 0

𝑡
𝑑𝑡 Integration then gives:

         −
1

NOBr 𝑡
+

1

NOBr 0
= −𝑘𝑡     or   

1

NOBr 𝑡
=

1

NOBr 0
+ 𝑘𝑡

Compare first-order reactions with second-order reactions:
 First order:   Second order:

𝑁2𝑂5 𝑡 = 𝑁2𝑂5 0 𝑒−𝑘𝑡   
1

NOBr 𝑡
=

1

NOBr 0
+ 𝑘𝑡

 A plot of the ln
𝑁2𝑂5 𝑡

𝑁2𝑂5 0
 vs. t A plot of 

1

NOBr 𝑡
  vs. t 

 is linear, with a slope of –k.  is linear, with a slope of +k.

This is a way to distinguish between these two cases, and to determine k.



Example:   The reaction CS2(g) + 2O3(g)        CO2(g) + 2SO2(g) 

Assume a rate law: 𝑣 𝑡 = −
𝑑[CS2]

𝑑𝑡
= 𝑘 CS2

𝑚 O3
𝑛 

With a large excess of CS2, we get the data below. But if CS2 is in large excess, its 
concentration is nearly constant. We can test for the order with respect to O3 by 
plotting the drop in O3 partial pressure as a function of time, assuming either 
first order or second order kinetics in O3:

    First-order plot             Second-order plot
Data:                   
Time(s) O3 pressure(torr)
0 1.76
30         1.04
60         0.79
120         0.52
180         0.37
240         0.29
  Looks pretty definite that the reaction 
                                                                               is second order in O3!

Determining Rate Laws: The Method of Isolation



Reaction Mechanisms
A reaction mechanism is the sequence of elementary reactions that carry the 
system from reactants to products.  

Each elementary reaction follows a rate law that makes sense from the 
stoichiometry, so for example the elementary reaction 

A+B            C 

follows the rate law 
d A

dt
= −k1 A B . 

Here I’ll use the symbol               to indicate a reaction that is an elementary 
step, to distinguish it from an overall reaction, which is indicated by          .

k1



The Rate-Determining Step

For some reactions, one step is much slower than the others, becoming the rate 
determining step.  Subsequent steps need not be considered – products will be formed as 
fast as the rate-determining step can proceed.

An example:     NO2(g) + CO(g)          NO(g) + CO2(g)

Mechanism:

 Step 1: NO2(g)  +  NO2(g)  NO3(g)  +  NO(g)

 Step 2: NO3(g)  +  CO(g)  NO2(g)  +  CO2(g)

In this mechanism, k1 >> k2, so step 1 is the rate determining step.  The rate law is simply:

𝑣 = −
1

2

𝑑 NO2

𝑑𝑡
=

𝑑 NO

𝑑𝑡
=

𝑑 CO2

𝑑𝑡
= 𝑘1 NO2

2

This breaks down when the CO concentration is so low that the rate of step 2 is slower than 
step 1, but for a broad range of CO concentrations, the reaction follows this rate law.

k2

k1



Mechanisms

Each elementary reaction contributes to the production or destruction of a molecule, so:
𝑑 N2O5

𝑑t
= −𝑘1 N2O5 + 𝑘2 NO2 NO3 − 𝑘4 NO N2O5  

𝑑 NO2

𝑑t
= 𝑘1 N2O5 − 𝑘2 NO2 NO3 + 3𝑘4 NO N2O5  

𝑑 NO3

𝑑t
= 𝑘1 N2O5 − 𝑘2 NO2 NO3 − 𝑘3 NO2 NO3 = 𝑘1 N2O5 − (𝑘2+𝑘3) NO2 NO3  

𝑑 NO

𝑑t
= 𝑘3 NO2 NO3 − 𝑘4 NO N2O5             

and          
𝑑 O2

𝑑t
= 𝑘3 NO2 NO3  

A Plausible Mechanism for 2N2O5          4NO2 + O2:

Step 1:   N2O5            NO2  +   NO3

Step 2: NO2 +   NO3            NO  +  O2  +  NO2

Step 3: NO  + N2O5   NO2 + NO2 + NO2

k1

k2
k3

k4



A Plausible Mechanism for 2N2O5          4NO2 + O2

Looking at all the reactants and product species, we end up with FIVE coupled nonlinear 
differential equations!  YIKES!!
𝑑 N2O5

𝑑t
= −𝑘1 N2O5 + 𝑘2 NO2 NO3 − 𝑘4 NO N2O5   

𝑑 NO2

𝑑t
= 𝑘1 N2O5 − 𝑘2 NO2 NO3 + 3𝑘4 NO N2O5  

𝑑 NO3

𝑑t
= 𝑘1 N2O5 − (𝑘2+𝑘3) NO2 NO3  

𝑑 NO

𝑑t
= 𝑘3 NO2 NO3 − 𝑘4 NO N2O5             

and          
𝑑 O2

𝑑t
= 𝑘3 NO2 NO3

How can we solve this messy problem?

Key simplifying approximation: Reactive intermediates are consumed almost as quickly 
as they are produced, so their concentration is small and doesn’t change much.  We can 
set their time derivatives to zero.  [This is the steady-state approximation.]

In the environment of the N2O5 decomposition, the reactive intermediates are NO3 and 

NO.  Therefore, we can set the rates 
𝑑 NO3

𝑑t
= 0 and 

𝑑 NO

𝑑t
= 0.  This gives

         𝑘1 N2O5 − (𝑘2+𝑘3) NO2 NO3 = 0     from 
𝑑 NO3

𝑑t
= 0 

and     𝑘3 NO2 NO3 − 𝑘4 NO N2O5 = 0 from 
𝑑 NO

𝑑t
= 0



The Steady-State Approximation Simplifies Things!
We have the net rate of change in N2O5 concentration:
𝑑 N2O5

𝑑t
= −𝑘1 N2O5 + 𝑘2 NO2 NO3 − 𝑘4 NO N2O5  

And the steady-state approximations:

1. For [NO3]:    𝑘1 N2O5 − (𝑘2+𝑘3) NO2 NO3 = 0   

2. For [NO]:     𝑘3 NO2 NO3 − 𝑘4 NO N2O5 = 0 

We can solve these equations for NO2 NO3  and NO N2O5 :

From 1: NO2 NO3 =
𝑘1

(𝑘2+𝑘3)
N2O5              From 2: NO N2O5 =

𝑘3

𝑘4
NO2 NO3  

                              =
𝑘1𝑘3

(𝑘2+𝑘3)𝑘4
N2O5  

Putting these two expressions into the expression for 
𝑑 N2O5

𝑑t
, we get a net first-order rate 

equation for the decomposition of N2O5:
𝑑 N2O5

𝑑t
= −𝑘1 N2O5 + 𝑘2

𝑘1

(𝑘2+𝑘3)
N2O5 − 𝑘4

𝑘1𝑘3

(𝑘2+𝑘3)𝑘4
N2O5  

Simplifying, this gives: 
𝑑 N2O5

𝑑t
= −𝑘1 +

𝑘1𝑘2

(𝑘2+𝑘3)
−

𝑘1𝑘3

(𝑘2+𝑘3)
N2O5 = −

2𝑘1𝑘3

(𝑘2+𝑘3)
N2O5

The experimental rate law was 
𝑑 N2O5

𝑑t
= −𝑘 N2O5 , so this mechanism is consistent with 

the measured rate constant, k, which is given in terms of elementary steps by 𝑘 =
2𝑘1𝑘3

(𝑘2+𝑘3)



Important Things to Note:

1. Elementary steps follow straightforward rate laws given by 𝑘 𝐴 𝑛 𝐵 𝑚, etc. where n 
molecules of A react with m molecules of B.  The total number of molecules involved in 
one elementary step (n+m+…) is called the molecularity of that step.



Important Things to Note:

1. Elementary steps follow straightforward rate laws given by 𝑘 𝐴 𝑛 𝐵 𝑚, etc. where n 
molecules of A react with m molecules of B.  The total number of molecules involved in 
one elementary step (n+m+…) is called the molecularity of that step.

2. The overall reaction follows a rate law often does not follow the stoichiometry of the 
reaction.  For reactions that proceed by a complicated series of elementary steps, the 
rate law can be very complicated.  For example, in the reaction

 H2(g) + Br2(g)          2HBr(g)

 the rate law would is NOT 
𝑑 H2

𝑑𝑡
=

𝑑 Br2

𝑑𝑡
= −k H2 Br2 , which would be true if the   

 equation written above were an elementary step.

 The measured rate law is   
𝑑 H2

𝑑𝑡
=

𝑑 Br2

𝑑𝑡
= −

𝑘′ H2 Br2
1/2

1+𝑘"[𝐻𝐵𝑟]/ Br2
 , which shows that there is   

 much more to this reaction than just a single elementary step!



Important Things to Note:

1. Elementary steps follow straightforward rate laws given by 𝑘 𝐴 𝑛 𝐵 𝑚, etc. where n 
molecules of A react with m molecules of B.  The total number of molecules involved in 
one elementary step (n+m+…) is called the molecularity of that step.

2. The overall reaction follows a rate law often does not follow the stoichiometry of the 
reaction.  For reactions that proceed by a complicated series of elementary steps, the 
rate law can be very complicated.  For example, in the reaction

 H2(g) + Br2(g)          2HBr(g)

 the rate law would is NOT 
𝑑 H2

𝑑𝑡
=

𝑑 Br2

𝑑𝑡
= −k H2 Br2 , which would be true if the   

 equation written above were an elementary step.

 The measured rate law is   
𝑑 H2

𝑑𝑡
=

𝑑 Br2

𝑑𝑡
= −

𝑘′ H2 Br2
1/2

1+𝑘"[𝐻𝐵𝑟]/ Br2
 , which shows that there is   

 much more to this reaction than just a single elementary step!

3. Just because a mechanism can be found that gives the proper, experimentally-measured 
rate law does not mean that mechanism is correct!  Often, more than one mechanism 
can be written that agrees with the overall experimentally-measured rate law.



Chain Reactions:

An example of a chain reaction is the reaction

   H2(g) + Br2(g)          2HBr(g)

Chain reactions typically involve at least 3 (and sometimes 4) types of elementary steps:

Initiation:         Br2(g) + M(g)             2Br∙(g) + M(g)  

             [Here M is any molecule in the gas, which energizes the Br2 by colliding with it.]

k1



Chain Reactions:

An example of a chain reaction is the reaction

   H2(g) + Br2(g)          2HBr(g)

Chain reactions typically involve at least 3 (and sometimes 4) types of elementary steps:

Initiation:         Br2(g) + M(g)                2Br∙(g) + M(g)  

             [Here M is any molecule in the gas, which energizes the Br2 by colliding with it.]

Propagation: Br∙(g) + H2(g)                HBr(g) + H∙(g) H and Br are called the 

  H∙(g) + Br2(g)                HBr(g) + Br∙(g) carriers of the chain reaction

       The propagation steps consume chain carriers just as quickly as they regenerate them.

k1
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Chain Reactions:

An example of a chain reaction is the reaction

   H2(g) + Br2(g)          2HBr(g)

Chain reactions typically involve at least 3 (and sometimes 4) types of elementary steps:

Initiation:         Br2(g) + M(g)                2Br∙(g) + M(g)  

             [Here M is any molecule in the gas, which energizes the Br2 by colliding with it.]

Propagation: Br∙(g) + H2(g)                HBr(g) + H∙(g) H and Br are called the 

  H∙(g) + Br2(g)                HBr(g) + Br∙(g) carriers of the chain reaction

       The propagation steps consume chain carriers just as quickly as they regenerate them.

Inhibition: This step is not always present, so some chain reactions are very fast.

  HBr(g) + H∙(g)              Br∙(g) +H2(g)

 Here, the inhibition reaction re-forms a reactant, so it slows the net rate of reaction.

k1
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Chain Reactions:

An example of a chain reaction is the reaction

   H2(g) + Br2(g)          2HBr(g)

Chain reactions typically involve at least 3 (and sometimes 4) types of elementary steps:

Initiation:         Br2(g) + M(g)                2Br∙(g) + M(g)  

             [Here M is any molecule in the gas, which energizes the Br2 by colliding with it.]

Propagation: Br∙(g) + H2(g)                HBr(g) + H∙(g) H and Br are called the 

  H∙(g) + Br2(g)                HBr(g) + Br∙(g) carriers of the chain reaction

       The propagation steps consume chain carriers just as quickly as they regenerate them.

Inhibition: This step is not always present, so some chain reactions are very fast.

  HBr(g) + H∙(g)              Br∙(g) +H2(g)

 Here, the inhibition reaction re-forms a reactant, so it slows the net rate of reaction.

Termination: 2Br∙(g) + M(g)          Br2(g) + M(g)

       The termination reaction destroys two chain carriers, and forms a reactant molecule.    

      In this system, the Br and H atoms that are the chain carriers are radicals (atoms or 

      molecules with unpaired electrons), which are highly reactive.  Chain reactions typically 

      involve radicals as the chain carriers.
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Chain Reactions:

An example of a chain reaction is the reaction

   H2(g) + Br2(g)          2HBr(g)

Chain reactions typically involve at least 3 (and sometimes 4) types of elementary steps:

Initiation:         Br2(g) + M(g)                2Br∙(g) + M(g)  

             [Here M is any molecule in the gas, which energizes the Br2 by colliding with it.]

Propagation: Br∙(g) + H2(g)                HBr(g) + H∙(g) H and Br are called the 

  H∙(g) + Br2(g)                HBr(g) + Br∙(g) carriers of the chain reaction

       The propagation steps consume chain carriers just as quickly as they regenerate them.

Inhibition: This step is not always present, so some chain reactions are very fast.

  HBr(g) + H∙(g)              Br∙(g) +H2(g)

 Here, the inhibition reaction re-forms a reactant, so it slows the net rate of reaction.

Termination: 2Br∙(g) + M(g)          Br2(g) + M(g)

       The termination reaction destroys two chain carriers, and forms a reactant molecule.    

      In this system, the Br and H atoms that are the chain carriers are radicals (atoms or 

      molecules with unpaired electrons), which are highly reactive.  Chain reactions typically 

      involve radicals as the chain carriers.

The steady-state approximation can be used to work out the kinetics of this system, giving 
the correct, experimentally observed rate law.

k1
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Branching Chain Reactions:

A branching chain reaction has steps that increase the number of chain carriers.  
These reactions really take off, usually explosively!

Example:    2H2 + O2              2H2O, chain carriers are H∙ and OH∙
1. Initiation Step:  H2 + O2                 2OH∙
2. Chain Propagation: OH∙ + H2              H2O + H∙
3. Chain Branching:  H∙ + O2              OH∙ + ∙O∙
4. Chain Branching:  ∙O∙ + H2               OH∙ + H∙
5. Termination  H∙ + H∙                   H2 (occurs on vessel wall)

Steps 3 and 4 together give  H∙ + O2 + H2                         2OH∙ + H∙

These two steps multiply the number of chain carriers by a factor of three!  BANG!



Branching Chain Reactions:

A branching chain reaction has steps that increase the number of chain carriers.  These 
reactions really take off, usually explosively!

Example:    2H2 + O2              2H2O, chain carriers are H∙ and OH∙
1. Initiation Step:  H2 + O2                 2OH∙
2. Chain Propagation: OH∙ + H2              H2O + H∙
3. Chain Branching:  H∙ + O2              OH∙ + ∙O∙
4. Chain Branching:  ∙O∙ + H2               OH∙ + H∙
5. Termination  H∙ + H∙                   H2 (occurs on vessel wall)

Steps 3 and 4 together give  H∙ + O2 + H2                         2OH∙ + H∙

These two steps multiply the number of chain carriers by a factor of three!  BANG!

Example 2: (SIMPLIFIED)     235U        92Kr + 141Ba + 2n, chain carriers are n
1. Initiation Step:             235U        92Kr + 141Ba + 2n  (spontaneous fission)
2. Chain Branching:     n + 235U        92Kr + 141Ba + 3n  
     (triples the number of chain carriers)



https://www.youtube.com/watch?v=11e8XyUBqRQ



Branching Chain Reactions:

https://www.youtube.com/watch?v=-zX-gz1lRt0



Enzyme Kinetics:

Enzymes - Proteins that convert substrates to products

The overall reaction may be written as

E + S            E + P

Example: Phosphorylation of glucose to glucose-6-phosphate, catalyzed by hexokinase. 

 Glucose is the substrate and glucose-6-phosphate is the product. 

                             +                                                                                     +

    glucose                                      ATP                         glucose-6-phosphate                 ADP

Hexokinase accepts glucose into its active site, where the presence of the correct amino 
acid side groups greatly accelerates the reaction:



Enzyme Kinetics:
Many enzyme-catalyzed reactions (including this one) follow a rate law of the form

−
𝑑 𝑆

𝑑𝑡
=

𝑘 𝑆

𝐾 + 𝑆
E 0 ,

where [S] is the concentration of the substrate, 

 [E]0 is the total concentration of enzyme, and 

 k and K are constants. 
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where [S] is the concentration of the substrate, 

 [E]0 is the total concentration of enzyme, and 

 k and K are constants. 

This is explained by the Michaelis-Menten reaction mechanism (1913):  

Step 1: E + S          ES   ES is the enzyme with the substrate bound in the active site.  

    

Step 2: ES                   E + P
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Enzyme Kinetics:
Many enzyme-catalyzed reactions (including this one) follow a rate law of the form

−
𝑑 𝑆

𝑑𝑡
=

𝑘 𝑆

𝐾 + 𝑆
E 0 ,

where [S] is the concentration of the substrate, 

 [E]0 is the total concentration of enzyme, and 

 k and K are constants. 

This is explained by the Michaelis-Menten reaction mechanism (1913):  

Step 1: E + S          ES   ES is the enzyme with the substrate bound in the active site.  

    

Step 2: ES                   E + P

This gives rate expressions for [S], [ES], and [P]:

 
𝑑 S

𝑑t
= −𝑘1 E [S] + 𝑘−1 ES  

 
𝑑 ES

𝑑t
= 𝑘1 E S − 𝑘−1 ES − 𝑘2 ES + 𝑘−2 E P  

   = 𝑘1 E S − (𝑘−1+𝑘2) ES + 𝑘−2 E P   

 
𝑑 P

𝑑t
= 𝑘2 ES − 𝑘−2 E P  

k1

k-1
k2

k-2



Enzyme Kinetics:
Three coupled differential equations: How can we solve them?

1.  
𝑑 S

𝑑t
= −𝑘1 E [S] + 𝑘−1 ES  

2.  
𝑑 ES

𝑑t
= 𝑘1 E S − (𝑘−1+𝑘2) ES + 𝑘−2 E P

3.  
𝑑 P

𝑑t
= 𝑘2 ES − 𝑘−2 E P
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The enzyme is not consumed in the reaction, so [E]+[ES] is conserved, defined as [E]0:

 [E]0 ≡ [ES] + [E]   or  [E]=[E]0-[ES]
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The enzyme is not consumed in the reaction, so [E]+[ES] is conserved, defined as [E]0:

 [E]0 ≡ [ES] + [E]   or  [E]=[E]0-[ES]

Then we can rewrite Eq. 2 
𝑑 ES

𝑑t
= 𝑘1 E S − (𝑘−1+𝑘2) ES + 𝑘−2 E P  as:

𝑑 ES

𝑑t
= 𝑘1( E 0 − [ES]) S − (𝑘−1+𝑘2) ES + 𝑘−2( E 0 − [ES]) P  
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The enzyme is not consumed in the reaction, so [E]+[ES] is conserved, defined as [E]0:

 [E]0 ≡ [ES] + [E]   or  [E]=[E]0-[ES]

Then we can rewrite Eq. 2 
𝑑 ES

𝑑t
= 𝑘1 E S − (𝑘−1+𝑘2) ES + 𝑘−2 E P  as:

𝑑 ES

𝑑t
= 𝑘1( E 0 − [ES]) S − (𝑘−1+𝑘2) ES + 𝑘−2( E 0 − [ES]) P  

           = −(𝑘−1+𝑘2 + 𝑘−2 P + 𝑘1 S ) ES + 𝑘1( E 0) S + 𝑘−2( E 0) P  

We can apply the steady-state approximation to [ES]:

𝑑 ES

𝑑t
= −(𝑘−1+𝑘2 + 𝑘−2 P + 𝑘1 S ) ES + 𝑘1 E 0 S + 𝑘−2 E 0 P = 0. 

Solving for [ES] gives:

ES =
𝑘1 S + 𝑘−2 P

𝑘1 S + 𝑘−2 P + 𝑘−1 + 𝑘2
E 0



Enzyme Kinetics:

The steady-state expression: ES =
𝑘1 S +𝑘−2 P

𝑘1 S +𝑘−2 P +𝑘−1+𝑘2
E 0

can be substituted into 
𝑑 S

𝑑t
= −𝑘1 E [S] + 𝑘−1 ES , to give the reaction rate:

𝑣 = −
𝑑 S

𝑑t
= 𝑘1 E S − 𝑘−1

𝑘1 S +𝑘−2 P

𝑘1 S +𝑘−2 P +𝑘−1+𝑘2
E 0 
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Again using [E]=[E]0-[ES] and the steady-state approximation for [ES] (above), this gives

−
𝑑 S

𝑑t
= 𝑘1 E 0 −

𝑘1 S +𝑘−2 P

𝑘1 S +𝑘−2 P +𝑘−1+𝑘2
E 0 S − 𝑘−1

𝑘1 S +𝑘−2 P

𝑘1 S +𝑘−2 P +𝑘−1+𝑘2
E 0 
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−
𝑑 S

𝑑t
=

𝑘1𝑘2 S +𝑘−1𝑘−2 P

𝑘1 S +𝑘−2 P +𝑘−1+𝑘2
E 0 
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If the experimental measurements are only made during the initial period, when only 1-3% of 
substrate is converted to products, we may approximate [S]=[S]0 and [P]=0, to obtain:

−
𝑑 S

𝑑t
=

𝑘1𝑘2 S 0

𝑘1 S 0+𝑘−1+𝑘2
E 0    

or −
𝑑 S

𝑑t
=

𝑘2 S 0

S 0+(𝑘−1+𝑘2)/𝑘1
E 0  

Michaelis-Menten equation



Enzyme Kinetics:
The Michaelis-Menten equation 

−
𝑑 S

𝑑t
=

𝑘2 S 0

S 0 + (𝑘−1 + 𝑘2)/𝑘1
E 0

shows that when S 0≫ (𝑘−1 + 𝑘2)/𝑘1 , the rate becomes    −
𝑑 S

𝑑t
= 𝑘2 E 0

k2[E]0 , gives the maximum rate of conversion of substrate to product in units of 
 mol∙L-1∙s-1, and is denoted as Vmax.
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 mol∙L-1∙s-1, and is denoted as Vmax.  

The rate constant, k2 (units of s-1), gives the maximum rate of product molecule          
production per enzyme molecule, and is called the turnover number.  
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production per enzyme molecule, and is called the turnover number.  

The combination   (𝑘−1 + 𝑘2)/𝑘1 , denoted by KM [units of concentration (mol∙L-1)], 
 is called the Michaelis constant.  The substrate concentration that gives half the 

maximum reaction rate is [S]0=KM. 



Enzyme Kinetics:
The Michaelis-Menten equation 

−
𝑑 S

𝑑t
=

𝑘2 S 0

S 0 + (𝑘−1 + 𝑘2)/𝑘1
E 0

shows that when S 0≫ (𝑘−1 + 𝑘2)/𝑘1 , the rate becomes    −
𝑑 S

𝑑t
= 𝑘2 E 0

k2[E]0 , gives the maximum rate of conversion of substrate to product in units of 
 mol∙L-1∙s-1, and is denoted as Vmax.  

The rate constant, k2 (units of s-1), gives the maximum rate of product molecule          
production per enzyme molecule, and is called the turnover number.  

The combination   (𝑘−1 + 𝑘2)/𝑘1 , denoted by KM [units of concentration (mol∙L-1)], 
 is called the Michaelis constant.  The substrate concentration that gives half the 

maximum reaction rate is [S]0=KM. 

Small values of KM correspond to enzymes that tightly bind the substrate (k1 is the reaction 
that binds substrate to the enzyme, k-1 and k2 release substrate or product from the enzyme).



Enzyme Kinetics:
The Michaelis-Menten equation 

−
𝑑 S

𝑑t
=

𝑘2 S 0

S 0 + (𝑘−1 + 𝑘2)/𝑘1
E 0

shows that when S 0≫ (𝑘−1 + 𝑘2)/𝑘1 , the rate becomes    −
𝑑 S

𝑑t
= 𝑘2 E 0

k2[E]0 , gives the maximum rate of conversion of substrate to product in units of 
 mol∙L-1∙s-1, and is denoted as Vmax.  

The rate constant, k2 (units of s-1), gives the maximum rate of product molecule          
production per enzyme molecule, and is called the turnover number.  

The combination   (𝑘−1 + 𝑘2)/𝑘1 , denoted by KM [units of concentration (mol∙L-1)], 
 is called the Michaelis constant.  The substrate concentration that gives half the 

maximum reaction rate is [S]0=KM. 

Small values of KM correspond to enzymes that tightly bind the substrate (k1 is the reaction 
that binds substrate to the enzyme, k-1 and k2 release substrate or product from the enzyme).

Studies of enzyme kinetics are performed very 
frequently in the pharmaceutical industry, 
where molecules are sought that can block or 
reduce enzyme activity to treat a particular 
disease or condition.

By Thomas Shafee - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=38914698



Temperature Dependence of Reaction Rates:
The Swedish chemist, Svante Arrhenius, found that a great many reactions exhibited a reaction rate 
coefficient that depends on temperature according to the formula

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇 , [Arrhenius equation]

where A and Ea are constants, and R is the gas constant.  Of course, T is measured in Kelvin.  
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A is called the pre-exponential factor, and Ea is called the activation energy.  The idea is that there is 
some minimum amount of energy that is required for the reaction to occur, and only reactants that 
come together with this minimum amount can react.
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A is called the pre-exponential factor, and Ea is called the activation energy.  The idea is that there is 
some minimum amount of energy that is required for the reaction to occur, and only reactants that 
come together with this minimum amount can react.

The activation energy is readily determined by plotting  ℓ𝑛(𝑘) vs. 1/T, since 

ℓ𝑛 𝑘 = ℓ𝑛 𝐴 −
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Here’s an example: The decomposition of N2O5 follows the first-order integrated rate law
𝑁2𝑂5 𝑡 = 𝑁2𝑂5 0 𝑒−𝑘𝑡

and k is measured at various temperatures as:

T(K)     k(s-1)  This gives the Arrhenius 

298 1.74 × 10-5 plot of ℓ𝑛(𝑘) vs. 1/T :

308 6.61 × 10-5 −
𝐸𝑎

𝑅𝑇
=

−12.39 0.11 𝐾×1000

𝑇

318 2.51 × 10-4 Ea = (12,390±110)K ∙R

328 7.59 × 10-4 Ea = (12,390±110)K ∙8.314 J∙mol-1∙K-1

338 2.40 × 10-3 Ea = 103 ±1 kJ∙mol-1



Activation Energy:
The activation energy is interpreted as the amount of energy needed to initiate the reaction.

The idea is that the reaction, energy must be added to the reactants to distort them in a 
manner that can allow products to form.  In reality, there is a separate activation energy for 
each step in the reaction mechanism, although we often lump these together to get an overall 
activation energy.  For a single fundamental step, such as the reaction

   N2O5              NO2  +   NO3

the N2O5 molecule must first be deformed to a point where it is downhill in energy to form 
products.

k1

N2O5

Ea (cat)

Ea

NO2+NO3

Ea for reverse rxn

Ea (reverse, cat)



Transition State Theory:
Our own Henry Eyring, who founded the graduate school at the University of Utah, 

developed a more fundamental theory of reaction processes that is now known as transition 
state theory.  This theory uses statistics to calculate the probability that the reactants reach 
the top of the reaction barrier, and then assumes there is an equal probability of dropping 
back down to starting materials or going forward to products.
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𝑘 𝑇 =
𝑘𝐵𝑇

ℎ𝑐𝑜  𝑒ΔS‡/𝑅𝑒−ΔH‡/RT   Here ΔH‡ and ΔS‡ refer to the enthalpy and entropy change 

in forming the transition state, kB is Boltzmann’s constant, and co is the standard state 
concentration (using 1 M).  
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state theory.  This theory uses statistics to calculate the probability that the reactants reach 
the top of the reaction barrier, and then assumes there is an equal probability of dropping 
back down to starting materials or going forward to products.

The final expression for the rate constant  that is obtained is:

𝑘 𝑇 =
𝑘𝐵𝑇

ℎ𝑐𝑜  𝑒ΔS‡/𝑅𝑒−ΔH‡/RT   Here ΔH‡ and ΔS‡ refer to the enthalpy and entropy change 

in forming the transition state, kB is Boltzmann’s constant, and co is the standard state 
concentration (using 1 M).  This provides a meaning for the pre-exponential factor in the 

Arrhenius expression, given by A =
𝑘𝐵𝑇

ℎ𝑐𝑜  𝑒ΔS‡/𝑅.  The pre-exponential factor is related to the 

entropy change required to form the transition state.



Thanks for your attention!

For your pleasure: A reaction with a really complicated reaction mechanism:

This example is the Briggs-Rauscher reaction, which has the overall reaction:
          IO3

- + 2H2O2 + CH2(COOH)2 + H+         ICH(COOH)2 + 2O2 + 3H2O
There are many steps, some of which produce intermediates that slow down the 
reaction.  The reaction is catalyzed by the Mn2+ ion. The color change is due to the 
production of I2, which is detected using the blue color of an I2-starch complex.

https://www.youtube.com/watch?v=weQz8lf55jM https://www.youtube.com/watch?v=WasYuiOk5xQ&ebc=ANyPxKrHgx3dg
eQi5IAFukyGwOB7mXDgYkF3Z7OHuSiVbS0EW-
UFucUCiVlDzUpFE61nvcsV9NpW1_6K703_pmSeXHDfvj6MKw
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