Single-molecule Fluorescence Microscopy: Quantitative Analysis by Counting Individual Molecules

Joel M. Harris, University of Utah

Measuring single-molecule DNA hybridization kinetics

Quantitative analysis by imaging and counting molecules

Sensitive detection of molecules by excitation of fluorescence

https://svi.nl/Fluorescence

http://zeiss-campus.magnet.fsu.edu/articles/basics/fluorescence.html

Imaging of molecules on surfaces by total-internal reflection fluorescence microscopy

Total-internal reflection illumination of the glass-solution interface. Image molecules that accumulate in the evanescent wave depth (~135 nm). EM-CCD

Quantitative analysis of interfacial populations by identifying and counting individual molecules

Counting of single fluorescent molecules on surfaces using spatial criteria Eric M. Peterson and Joel M. Harris, *Analytical Chemistry*, <u>82</u>, 189 (2010).

False positives, α < 2.8 spots per frame; false negatives, β < 1.5% for single fluors.

Studies of binding equilibria *at very low surface coverage* Surface populations determined *without intensity calibration* Observe interfacial kinetics *at equilibrium*

DNA duplex formation: detecting specific gene sequences

DNA base-pair recognition

Capturing specific DNA sequences with immobilized 'probe' strands

http://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction Sensors 2006, 6(8), 901-914; https://doi.org/10.3390/s6080901

DNA arrays for genetic disease detection

DNA microarrays are used in both research and medical diagnostics: Affymetrix GeneChip® Understanding of affinity constants and kinetics

can help with sensor design and operation.

Ultrasensitive (single-molecule) DNA analysis without amplification

Dalma-Weiszhausz, D. D.; Warrington, J.; Tanimoto, E. Y.; Miyada, C. G. *Methods in Enzymology*, **2006**, *410*, 3 - 28.

Imaging single-molecule DNA hybridization

GOALS:

- Immobilized DNA on passivated surfaces
- Quantify probe DNA binding site density and association constant
- Measure hybridization kinetics at equilibrium
- Investigate the influence of ionic strength on DNA hybridization
- Single-molecule microarrays: study the influence of labeling on DNA hybridization, competitive assays

Design constraints: Capture substrates that can be observed for long periods of time (good statistics, probe site imaging). Selectivity derived from a well-passivated surface.

Immobilizing amine-terminated DNA on an epoxide surface

DNA immobilization: epoxide-coupling reaction with high amine-DNA concentration, followed by 3-aminopropanesulfonate passivation.

Testing DNA probe selectivity

Probe ssDNA:5'- NH2-GT CGG TAT ATC CCA T-3'10-mer Target ssDNA:3'-ATA TAG GGT A-5'-PEG6-Cy310-mer Control ssDNA:3'-TAG ATG ATG A-5'-PEG6-Cy3

10-mer hybridization events are *reversible*

- Complementary DNA hybridization reversible near melting temperature
- Association and dissociation kinetics control population of labeled duplexes

Jungmann et al. *Nano Lett.* **2010**, *10*, 4756 Chen, J.; Bremauntz, A.; Kisley, L.; Shuang, B.; Landes, C. F. ACS Appl. Mater. Interfaces, **2013**, *5*, 9338

Hybridization at interface with immobilized probe

Imaging at 0.5 Hz Playback at 20x speed

Expected concentration response: Langmuir site-binding model

Concentration

Target DNA concentration response

Total fluorescence intensity shows probe-site saturation

But the response is not calibrated!

Calibrating fluorescence intensities with *single-molecule standards*

Obtain probe density and duplex association constant

Measuring duplex dissociation rates at equilibrium

Immobilized DNA exhibits comparable association constants and hybridization kinetics as in free solution: *Anal. Chem.* <u>88</u>, 1345 (2016).

Electrostatic interactions between complementary strands

lonic strength strongly governs the association constant

How about the kinetics of DNA hybridization?

Both rate constants are very sensitive to ionic strength

Can we model the electrostatic interactions that influence DNA hybridization kinetics?

Modeling electrostatic contributions to DNA binding energies

* Guohui Zheng, Xiang-Jun Lu, and Wilma K. Olson, Nucleic Acids Research, 2009, 37 (suppl 2), W240-W6.

Scaling DNA microarrays to the molecular limit: a spot is an individual DNA probe strand

Dalma-Weiszhausz, D. D.; Warrington, J.; Tanimoto, E. Y.; Miyada, C. G. *Methods in Enzymology*, **2006**, *410*, 3

- On- and off-rates from observing individual probe molecules
- Characterize heterogeneity on a per-molecule basis
- Identify individual probe DNA molecules on the surface
- Measure the kinetics of *unlabeled* target strands
- Technical challenges: track (unlabeled) probe sites by their locations. Need spatial resolution and stability.

Locating probe DNA sites and correcting stage drift

1. Locate centroids with a fit to the PSF

2. Generate high-resolution map of target coordinates in time

3. Measure stage drift with spatial-temporal autocorrelation

$$f(\vec{\boldsymbol{r}},\tau) = \left\langle \rho_t(\vec{\boldsymbol{R}},t)\rho_t(\vec{\boldsymbol{R}}-\vec{\boldsymbol{r}},t+\tau) \right\rangle$$

4. Generate coordinate corrections (20-nm resolution) to compensate for stage drift.

Super-resolution imaging of DNA hybridization

Mapping locations of reversible hybridization events reveals *individual immobilized probe molecules*:

Surf-NH-5'-GTC GGT ATA TCC CAT-3' A TAT AGG GTA-5'-PEG₆-Cy3

Hybridization at 24.0 °C, 250 mM NaCl

Measuring hybridization kinetics at individual probe DNA

Hybridization kinetics of *individual* probe molecules

- Determine K_A directly from *kinetics*
- Precision in individual molecule kinetics largely governed by sampling statistics.
- Can *identify* molecules by their dissociation rates.

Identifying individual DNA molecules by dissociation kinetics

Investigating effects of dye labels on DNA hybridization

- Fluorescent labels interact with single- and double-stranded DNA
- Label impacts duplex stability by pi-stacking interactions: prevents fraying, strongest for A-T base pairs*

* Spiriti, J. ; Binder, J. K. ; Levitus, M. ; van der Vaart., A. *Biophys. J.* **2011**, *100*, 1049.

Observing single-probe sites: kinetics of competitive hybridization

Competitive hybridization of labeled and unlabeled DNA

Monte-Carlo simulations of hybridization intervals

Rate model for competing hybridization

Solve system of differential equations for competing hybridization

$$\frac{d[P]}{dt} = -k_{onu}[U][P] + k_{offu}[UP] - k_{onl}[L][P]$$

$$\frac{d[UP]}{dt} = k_{onu}[U][P] - k_{offu}[UP]$$

$$P(t) + UP(t) = P_{tot}[A_1e^{-k_1t} + A_2e^{-k_2t}] \quad \text{where}$$

$$k_1 = \frac{k_{offu} + k_{onl} + k_{onu} + k_q}{2} \qquad k_2 = \frac{k_{offu} + k_{onl} + k_{onu} - k_q}{2}$$

$$k_q = \sqrt{k_{offu}^2 + k_{onl}^2 + k_{onu}^2 - 2k_{offu}k_{onl} + 2k_{offu}k_{onu} + 2k_{onl}k_{onu}}$$

Monte-Carlo simulations of hybridization intervals – fit to the model

Experimental hybridization intervals

Experimental Conditions:

- Labeled target: 30 nM
- Unlabeled Target: (0-100nM)

Probe5'-TTC GGT ATA TCC CATLabeled target3'-TAT AGG GTA-Cy3Unlabeled target3'-CA TAT AGG GTA

Impact of labeling on DNA hybridization kinetics

Labeling impacts both DNA duplex stability and kinetics

Summary comments

Measurements of interfacial binding equilibria and kinetics at the single-molecule level.

Quantification of probe DNA surface densities with single-molecule standards.

Measurement of DNA association constants, kinetics, competitive assays.

New directions: detecting single-nucleotide polymorphisms, assembly kinetics of DNA split-aptamers.

Acknowledgments

Eric Peterson Franki Morris Mike Manhart

National \$cience Foundation